Liouville type theorem for stable solutions of p-Laplace equation in RN
نویسندگان
چکیده
منابع مشابه
Liouville-type theorems for stable and finite Morse index solutions of a quasi-linear elliptic equation
We establish Liouville-type theorems for stable and finite Morse index weak solutions of −∆pu = f(x)F (u) in R . For a general non-linearity F ∈ C(R) and f(x) = |x|, we prove such theorems in dimensions N ≤ 4(p+α) p−1 +p, for bounded radial stable solutions. Then, we give some point-wise estimates for not necessarily bounded solutions. Also, similar theorems will be proved for both radial finit...
متن کاملA Liouville-type theorem and the decay of radial solutions of a semilinear heat equation
We consider the semilinear parabolic equation ut = ∆u+ up on RN , where the power nonlinearity is subcritical. We first address the question of existence of entire solutions, that is, solutions defined for all x ∈ RN and t ∈ R. Our main result asserts that there are no positive radially symmetric bounded entire solutions. Then we consider radial solutions of the Cauchy problem. We show that if ...
متن کاملBlow-up of Solutions to a p-Laplace Equation
Consider two perfectly conducting spheres in a homogeneous medium where the current-electric field relation is the power law. Electric field E blows up in the L∞-norm as δ, the distance between the conductors, tends to zero. We give here a concise rigorous justification of the rate of this blow-up in terms of δ. If the current-electric field relation is linear, see similar results obtained earl...
متن کاملInverse Laplace transform method for multiple solutions of the fractional Sturm-Liouville problems
In this paper, inverse Laplace transform method is applied to analytical solution of the fractional Sturm-Liouville problems. The method introduces a powerful tool for solving the eigenvalues of the fractional Sturm-Liouville problems. The results how that the simplicity and efficiency of this method.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Applied Mathematics Letters
سال: 2017
ISSN: 0893-9659
DOI: 10.1016/j.aml.2016.11.014